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Abstract This article investigates the ignition of low-exothermicity reactive porous solids exposed to a
maintained source of heat (hotspot), without oxygen limitation. The gas flow within the solid, particu-
larly in response to pressure gradients (Darcy’s law), is accounted for. Numerical experiments related
to the ignition of low-exothermicity porous materials are presented. Gas and solid products of reaction
are included. The first stage of the paper examines the (pseudo-homogeneous) assumption of a single
temperature for both phases, amounting to an infinite rate of heat exchange between the two. Isolating
the effect of gas production and flow in this manner, the effect of each on the ignition time is studied. In
such cases, ignition is conveniently defined by the birth of a self-sustained combustion wave. It is found
that gas production decreases the ignition time, compared to equivalent systems in which the gas-dynamic
problem is effectively neglected. The reason for this is quite simple; the smaller heat capacity of the gas
allows the overall temperature to attain a higher value in a similar time, and so speeds up the ignition
process. Next, numerical results using a two-temperature (heterogeneous) model, allowing for local heat
exchange between the phases, are presented. The pseudo-homogeneous results are recovered in the limit
of infinite heat exchange. For a finite value of heat exchange, the ignition time is lower when compared to
the single-temperature limit, decreasing as the rate of heat exchange decreases. However, the decrease is
only mild, of the order of a few percent, indicating that the pseudo-homogeneous model is in fact a rather
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good approximation, at least for a constant heat-exchange rate. The relationships between the ignition
time and a number of physico-chemical parameters of the system are also investigated.

Keywords Combustion wave · Heat exchange · Hotspot · Ignition · Low-exothermicity

1 Introduction

The ignition of highly exothermic porous solids, such as explosives and propellants, is an issue of great
practical importance, particularly when materials of this nature are inadvertently (or otherwise) exposed
to thermal energy from a heat source (hotspot). In the agriculture and shipping industries, amongst others,
an equally important issue is the exposure of low-exothermicity particulate or fibrous solids to heat sources
such as overheated bearings in grain-handling equipment, pilot lights or electrical arcs. In such cases the
hotspot invariably causes some destruction through slow local combustion, and perhaps, more importantly,
it may initiate a self-propagating combustion wave, which implies total loss of the material and could
possibly lead to some greater catastrophe such as fire or explosion. Clearly, in both cases, an understanding
of the conditions under which exothermic reaction occurs, the extent of decomposition and predictions of
ignition times are crucial for hazard prevention.

Liñan and Williams [1], and Kapila [2], have developed an asymptotic theory for the ignition of a highly
exothermic semi-infinite slab subjected to a maintained heat flux at one end. These studies provide a
leading-order prediction of the ignition time, which is defined as the time taken to reach some critical
temperature at which the reaction rate becomes significant. Because of the large heat release, reactant
consumption in these studies can be neglected in the time leading up to ignition, which always takes place
at the hotspot surface. The effects of reactant consumption, a non-planar geometry and gas-dynamics intro-
duce significant complications. Telengator and co-authors, [3, 4], have recently performed an analysis of
hotspot ignition in a one-dimensional porous medium model, by making the same assumption of negligible
reactant-consumption. However they did not include any pressure-driven flow effects and neglected the
hindrance to the flow caused by the presence of the porous solid. In this work we shall include such effects.

For a constant hotspot heat-flux, ignition criteria associated with low-exothermicity solids have been
obtained numerically in [5–9] for the finite slab, cylinder and sphere. In contrast to high-exothermicity
solids, the calculations reveal that:

(i) a substantial degree of reactant consumption occurs before the onset of ignition;
(ii) ignition typically occurs away from the hotspot boundary, within the virgin solid;

(iii) reactant consumption can prevent the formation of a combustion wave.

In fact, because of (iii), a more natural definition of ‘ignition’ is that a self-sustained combustion wave is
initiated, and this is one which we shall adopt in the latter sections of this paper. This of course implies that
the ignition (or critical) temperature at which a wave would be guaranteed in high-exothermicity materials
has no precise analogue for low-exothermicity materials.

Because of the many similarities, it is also worth drawing attention to a number of papers related to fil-
tration combustion (FC) waves, typically involving a heterogeneous exothermic reaction front propagating
through a porous solid which reacts with a gas carrying oxidizer flowing through its pores. Other related
applications of FC include important processes such as smouldering and self-propagating high-temperature
synthesis (see [10] and [11] for a review). Although much of the literature is concerned with the propa-
gation of such waves, initiation problems have also received attention, [12–14]. In FC, gas is assumed to
be forced through the material, effectively leading to a constant temperature at one end. Instead we shall
assume a constant heat flux, and that any convection is engendered by pressure gradients arising first from
the hotspot heating, and then from any associated combustion, rather than through any forcing.
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The outline of this paper is as follows. In Sect. 2 we derive the mathematical model which will be
employed in the next two sections. This model assumes local temperature equilibrium between the solid
and gas phases and will be called the Pseudo-Homogeneous (PH) model. In Sect. 3 we present numerical
calculations associated with the burning of low- and O(1)-exothermicity finite slabs, using the PH model.
We demonstrate the effect that the gas phase has on ignition (defined as the birth of a self-sustained
combustion wave), particularly when a substantial volume of gas is created during reaction. In Sect. 4 we
move to a mathematical model which employs separate energy (temperature) equations for the two phases.
We call this the Heterogeneous model and label it H. Numerical calculations reveal further information
regarding the effect of the gas phase on ignition, now with the effect of heat exchange. We further demon-
strate the effects on the ignition time of changes in a number of important physico-chemical parameters of
the system. Finally, in Sect. 5 we discuss our results and outline current and future work, particularly the
effect that oxygen dependence and/or restriction would have on our results.

2 Model and equations for a single temperature

Consider a rigid porous material, X, initially permeated by air, which undergoes an exothermic reaction
to form gaseous and solid products (Z and S, respectively):

X → aS + bZ, (1)

where a and b are the stoichiometric coefficients. The mathematical description of this process will involve
both the reaction-diffusion and gas-dynamic representations. Before presenting the model, we list the
assumptions and some explanatory comments.

(1) We assume that the oxygen supply is always adequate locally to support combustion – thus the reac-
tion is not oxygen-limited. The oxygen may be provided by transport of air through the pores, for
high-exothermicity materials, or alternatively it may be provided by the primary decomposition of the
solid.

(2) We assume a single temperature for both gas and solid, i.e., local temperature equilibrium between
the two phases. Although this assumption is widely used, see for example [3, 4, 10, 12–14, 15–18] and
references therein, we stress that one must generally allow for finite rates of inter-phase heat transfer.
For this reason we shall drop this assumption in Sect. 4. The results of that section will allow us to draw
conclusions about the effectiveness of the PH model.

(3) As in [3, 4, 10–14, 15–18] we neglect structural defects of the porous solid in our model. This allows us
to focus on the effects of the gas movement, gas production and inter-phase heat transfer that leads
up to the ignition event, after which structural deformation could occur. For details of the effects of
cracking and deformation the reader is referred to [19–21].

(4) Since, the reacting-solid conservation equation does not contain diffusive or convective-transport
terms, we need only a gas continuity equation, which relates the gas density and velocity to the poros-
ity in each control volume. This equation will also contain a source term from that fraction of the mass
of X which forms Z.

(5) We assume a single density, specific heat capacity and thermal conductivity for the gas phase, Z + air,
and similarly for the solid phase, X + S. The subscript g (s) refers to the common value of a gas (solid)
phase property.

(6) For the motion of the gas through the pores of the solid we assume Darcy’s law and the ideal-gas law.
(7) In any control volume it is necessary to specify how much of the products of reaction are gas, Z, and

solid, S, as fractions of the mass of X which has reacted. Let V′ be a control volume in which the
porosity is given by φ = φ(x, t) and the volume fraction of solid reactant, X, is given by ψ = ψ(x, t), at
any time t and location x in V′. The volume fraction vacated by any reacted X, from the initial time,
is given by (1 − φ0) − ψ , where φ0 is the initial porosity. Thus, the mass of the reacted X is given by
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m′
X = (1−φ0 −ψ)V′ρ′

s, where ρ′
s is the (constant) density of X. The mass of solid product must then be

m′
S = εmX ′ , where ε is the fraction of the mass of X which forms S. Since we are assuming that the solid

product has the same density as X, the volume occupied by S is given by VS′ = m′
S/ρ

′
s = ε(1−φ0−ψ)V′,

and therefore the volume fraction of S, at any time t and location x in V′, is ε(1 − φ0 − ψ(x, t)). From
the fact that the sum of all volume fractions must be unity, we finally obtain:

ψ = 1 − φ − εφ0

1 − ε

From this relationship, we can conveniently eliminate the solid concentration as a dependent variable
in favour of the volume fraction, ψ , of X.

Based on the preceding comments, we can write the equations for energy (temperature), gas continuity,
the ideal-gas law and Darcy’s law as follows:

∂

∂t′
(
(ρCp)

′T ′) + C′
g
∂

∂x′
(
ρ′

gu′
gφT ′) − ∂

∂x′

(
λ′ ∂T ′

∂x′

)
= −Q′ρ′
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∂t′
, (2a)
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∂t′
(
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gφ
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, (2b)

P′
g = ρ′

gR′T ′

W′
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(2c)

u′
g = −κ

′

ν′
∂P′

g

∂x′ , (2d)

where

λ′ ≡ λ′
s(1 − φ)+ λ′

gφ, (3a)

(ρCp)
′ ≡ ρ′

sC
′
s(1 − φ)+ ρ′

gC′
gφ, (3b)

− ∂ψ

∂t′
= 
′ ≡ A′ψe−E′/R′T ′

, (3c)

ψ = 1 − φ − εφ0

1 − ε
. (3d)

In these equations T is the (single) temperature, P′
g is pressure; ρ′

g (ρ′
s), λ′

g (λ′
s) and C′

g (C′
s) are the (actual)

density, thermal conductivity and specific heat capacity of the gas (solid) phase;
′ is the Arrhenius reaction
rate, with pre-exponential A′ and activation energy E′, W′

g is the molar mass of the gas phase, Q′ is the
heat release per kg of X, κ ′ is the permeability of the solid phase, ν′ is the dynamic viscosity of the gas, and
u′

g is the gas velocity.
The boundary conditions for temperature are:

T ′(x′ = x′
1, t′) = T ′

0 = const., −λ′ ∂T ′

∂x′ (0, t′) = p′, (4)

corresponding to a total heat flux p′ applied at x′ = 0, and ambient conditions at the outer edge of the
solid, x′ = x′

1. For the gas density we have:

ρ′
g(x

′ = x′
1, t′) = ρg0 = const. (5)

The conditions at the outer edge are consistent with atmospheric pressure, P′
at, and the gas velocity is zero

at the hotspot surface:

P′(x′ = x′
1, t′) = P′

at, u′
g(0, t′) = 0.
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Finally, the initial conditions are given by:

T ′(x′, 0) = T ′
0, ρ′

g(x
′, 0) = ρ′

g0, φ(x′, 0) = 1 − ψ(x′, 0) = φ0. (6)

In Darcy’s law, (2d), we employ the semi-empirical Kozeny–Carman (KC) law to define κ ′ (see [22]):

κ ′

ν′ = d′
p

2

k′
KC

2
τ ′ν′

φ3

(1 − φ)2
≡ k′ φ3

(1 − φ)2
,

where d′
p is an average pore size, k′

KC is a constant referred to as the KC shape-factor and k′ is called the
KC constant.

We assume that gas diffusion satisfies Fick’s law, which will be true provided that the Knudsen number
(= d′

mf/d
′
p, where d′

mf is the mean-free path of the gas) remains smaller than unity. This condition is also
required for the KC law to hold. We also point out that the ‘effective’ diffusion coefficient of the gas is
found from the molecular diffusion coefficient, by taking into account the porosity and tortuosity of the
solid (see [23] for more details). With a tortuosity of around 1–4, for porosities in the range 0·1–0·6, the
molecular-diffusion coefficient is reduced by a factor of between 1/40 and 1/2. Although this is not directly
relevant to the present paper, it will play a crucial role in the combustion of systems in which input of
oxygen is required and/or restricted; this is the subject of a forthcoming paper.

2.1 Non-dimensionalization

We non-dimensionalize Eqs. 2–6 with the following scales:
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yielding:
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= 
 ≡ Aψe−E/T . (8e)
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ψ = 1 − φ − εφ0

1 − ε
. (8f)

The boundary conditions, (4) and (5), become:

T(x1, t) = 1, (1 − φ + γφ)
∂T
∂x
(0, t) = −1,

ρg(x1, t) = 1, ug(0, t) = 0,
(9)

and the initial conditions, (6), are now:

T(x, 0) = 1, ρg(x, 0) = 1, φ(x, 0) = 1 − ψ(x, 0) = φ0, ug(x, 0) = 0. (10)

3 Pseudo-homogeneous results: PH model

Crucial to the result of the high-exothermicity analyses in, for example, [3, 4], is that reactant consumption
is negligible in the time leading up to ignition, defined to be when the temperature at the hotspot surface
reaches a critical value, Tc. In low-exothermicity materials a significant degree of reactant consumption
takes place before any critical temperature is reached, [5–9], and, in contrast to the high-exothermicity
case, the realization of a critical (so-called ignition) temperature is not a guarantee of a combustion wave.
It is natural therefore to re-define ‘ignition’ for low-exothermicity materials to mean that a self-sustained
combustion wave is formed, i.e., that the wave continues to the boundary, even if the hotspot heating is
switched off after it has formed.

In this section, we present some numerical computations relating to the ignition of porous solids with
low and O(1) values of Q. We use the PH model, (8)–(10), although we switch to the Heterogeneous model
in the next section. In both sections, we consider the following questions: what is the effect on the ignition
time (as defined above) of:

(i) gas production and movement?
(ii) heat exchange between the two phases?

(iii) the properties of the gas and solid phases?

Question (i) is partly answered in this section by isolating the gas-dynamic problem from that of heat
exchange. Answers to the remaining two questions and a fuller answer to the first will follow in the next
section.

Unless otherwise specified, the parameter values employed in this section are given in Table 1. In par-
ticular, the values of Q′, C′

p and T ′
0 yield Q = 1·11 (see definition (7) and earlier discussions). Note that we

replace the infinite domain of the previous section with a finite one of length x′
1 (dimensionless length x1).

The numerical strategy is detailed in the appendix, for both the PH and H models.
We first note that for values of power, p′, greater than a unique critical value, p′

c, there is found to be
a transition from slow-burning to quick-burning behaviour, in which a self-sustained combustion wave is
formed. Thus, there is no ambiguity in our definition of criticality. We shall always use the value p′ = 1000
W m−2, which gives a combustion wave in all cases considered. Note that in previous work concentrating
solely on reaction and diffusion, [5, 8], it was found that the critical power was unique for both the slab and
cylindrically symmetric geometries. In contrast, for a spherically symmetric geometry it was found that for
small-radii hotspots three distinct critical powers exist, p′

1 < p′
2 < p′

3. For p < p′
1 no wave is formed; for

p′
1 < p′ < p′

2 a wave is formed; for p′
2 < p′ < p′

3 no wave is formed; and for p > p′
3 a wave is formed.

Evidence of such behaviour was investigated in the present case but was not found to exist. The interesting
question of whether such behaviour can be found for a spherically symmetric analogue of the present
system is left as future work.

Let us define an ‘approximate ignition time’, τ1/2, as the time taken for the reactant volume fraction at
x = 0,ψ(0, t), to reach half of its initial value, (1−φ0)/2, with p′ = 1000 W m−2. This measure is reasonably
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Table 1 Typical parameter values. These values are intended to be representative of some low-exothermicity materials in
small-scale tests in laboratory experiments, [24]

Quantity Symbol Value

Pre-exponential factor A′ 105 s−1

Heat of reaction Q′ 4 × 105 J kg−1

Activation energy E′ 6·8 × 107 J kmol−1

KC constant k′ 1 × 10−7 kg m2 s
Solid density ρ′

s 350 kg m−3

Specific heat of solid C′
s 1200 J kg−1 K−1

Specific heat of gas C′
g 1000 J kg−1 K−1

Thermal conductivity of solid λ′
s 0·4 W m−1 K−1

Thermal conductivity of gas λ′
g 0·1 W m−1 K−1

Ambient/initial temperature T ′
0 300 K

Initial oxygen density ρ′
g0 1·5235 kg m−3

Molar mass of gas W′
g 0·038 kg mol−1

Applied heat flux p′ 1000 W m−2

Initial porosity φ0 0·3
Length of sample x′

1 0·1 m
Fraction of reacted mass forming solid S ε 0·8
Heat-exchange parameter μ′ 50 J m−3 K−1 s−1

accurate because in all cases considered a combustion wave was formed relatively soon afterψ(0, t) reaches
(1 − φ0)/2 and this combustion wave propagated independently of the hotspot heating, i.e., if the heating
was switched off, the wave would continue to the boundary. Based on a typical set of results, we provide
more justification later (we point out that this definition is designed to approximate the time at which
a self-propagating wave is formed but that alternative definitions would apply. For example, the time at
which the evolution of ψ(x, t) at x = 0 has the greatest slope).

With this definition we note that:

• τ1/2 is almost insensitive to the value of k′, with only very mild reductions as k′ is decreased (less than
1%), at fixed values of the other parameters.

• We can compare τ1/2 to the value for an equivalent system in which the gas flow is neglected, no gas
is formed during reaction and the density of the gas remains constant. In such systems, the density and
thermal conductivity are essentially those of the bulk material (they are averaged with respect to the
volume fractions of the gas and solid). The specific heat capacity, not being measured by volume, has to
be treated with more care, and is calculated from the volume-averaged heat capacity (not specific heat
capacity) divided by the bulk density. Equations 8–10 reduce to a reaction-diffusion set. Using the values
given in Table 1, Fig. 1 demonstrates the evolution of temperature and reactant volume fraction when
gas flow is neglected in this manner. Clearly, the hotspot heating at x = 0 generates a self-propagating
combustion wave that leads to complete depletion of the reactant. Waves of this type have been discussed
at length in [5–9], as mentioned earlier.

Again using the values of Table 1, the PH system, (8)–(10), yields the results shown in Figs. 2 and 3. The
information we seek is contained in Fig. 2, which shows the evolution of temperature and porosity through
the ignition stage and into the birth of a self-propagating wave. Comparing the profiles in Fig. 2 with those
in Fig. 1, we see that the ignition time, indicated by the comparatively rapid development of high temper-
ature and porosity gradients and measured by τ1/2, is about 20–30 s shorter. We can also see that, once the
combustion wave has passed, its speed of propagation is significantly increased by the movement of the
hot gas through the unreacted porous solid, which adds to the preheating effect produced by conduction.
This is true for all k′ > 0 and the wave speed increases with increasing k′.

We now refer to Fig. 4, which shows the value of τ1/2 as ε, the fraction of mass that forms solid,
is decreased, for three values of the initial porosity, φ0. The systems in which gas flow is neglected, as
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Fig. 1 Profiles of temperature and reactant volume fraction when gas flow is neglected, based on the values in Table 1.
Compare the time of ignition with those of (i) the PH model, Fig. 2; and (ii) the H model, Fig. 6.
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(i) no gas movement, Fig. 1; and (ii) the H model, Fig. 6

described above, correspond to the axis ε = 1. As we would expect, τ1/2 decreases as φ0 decreases, reflect-
ing the fact that less reactant is required to burn. We also find that the more gas is produced (ε is decreased),
the shorter the value of τ1/2. This is a direct result of the smaller heat capacity of the gas compared with
the solid, and therefore the larger averaged temperature during the ignition stage; hence the discrepancy
in ignition times in Figs. 1 and 2. There is, however, a sensitive balance in specific heat capacity. If we
gradually increase C′

g, as shown in Fig. 5, we eventually find the reverse trend, i.e., ignition time increasing
as ε decreases. For a two-temperature model, we shall find a slightly different behaviour.

These conclusions are of course only valid if we assume that the gas and solid temperatures equilibrate
rapidly enough for the difference to be neglected. In most systems the rate of heat exchange will have a
finite value, which will inevitably affect these results. We now demonstrate this effect both on the ignition
time and the combustion-wave speed.

4 Heterogeneous results: H model

For the H calculations, Eqs. 8–10 require modification by introducing separate energy equations for each
phase. The model we use is an extension of that in [11], without some of its simplifying assumptions (in
particular, we do not assume that the diffusion of heat in the gas phase is negligible):

δ

(
∂

∂t

(
ρgφTg

) + ∂

∂x

(
ρgugφTg

)) = γ

α

∂

∂x

(
φ
∂Tg

∂x

)
+ ((1 − ε)
+ μα−1)(Ts − Tg) (11a)
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the fraction of reactant that forms solid, ε, for
C′

g = 1200 J kg−1 K−1 (triangles); C′
g = 1400 J kg−1 K−1

(diamonds); C′
g = 1600 J kg−1 K−1 (squares); C′

g = 1800

J kg−1 K−1 (circles); all with C′
s = 1200 J kg−1 K−1

∂

∂t
((1 − φ)Ts) = ∂

∂x

(
(1 − φ)

∂Ts

∂x

)
+ Q
− μ(Ts − Tg) (11b)

∂

∂t

(
ρgφ

) + ∂

∂x

(
ρgugφ

) = (1 − ε)δ−1
, (11c)

ug = −k
φ3

(1 − φ)2

∂Pg

∂x
, (11d)
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Pg = ρgT, (11e)

− ∂ψ

∂t
= 
 ≡ Aψe−E/Ts , (11f)

ψ = 1 − φ − εφ0

1 − ε
(11g)

with boundary conditions:

Ts(x1, t) = Tg(x1, t) = 1, (1 − φ)
∂Ts

∂x
(0, t)+ γφ

∂Tg

∂x
(0, t) = −1,

Ts(0, t) = Tg(0, t), ρg(x1, t) = 1, ug(0, t) = 0, (12)

and initial conditions:

Tg(x, 0) = Ts(x, 0) = 1, ρg(x, 0) = 1, φ(x, 0) = 1 − ψ(x, 0) = φ0, ug(x, 0) = 0. (13)

It can be shown that these equations reduce to the PH model as μ′ → ∞ (to see this we can eliminate the
heat-exchange terms and set Tg = Ts).

Equations (11)–(13) have been non-dimensionalized using (7), with additionally:

Ts = T ′
s

T ′
0

, Tg = T ′
g

T ′
0

, μ = μ′λ′
sT

′
0

2

p′2 , α = C′
g

C′
s

, δ = ρ′
g

ρ′
s

, γ = λ′
g

λ′
s

. (14)

We have repeated the last three of (7) for convenience. It is important to note the following assumptions
and comments about the model (11)–(14) (also see [11]):

– Energy balances for each phase will account for heat flux through a given volume as well as heat exchange
between the two phases. As mentioned above, we have assumed a linear rate of heat exchange between
the solid and gas phases, with coefficientμ′, in units of J m−3 K−1 s−1. Assuming that the heat is produced
as solid-state reaction, we see that the energy released in the reaction is primarily spent on heating the
solid. As a result, we account for heat production by reaction only in the solid energy (temperature)
equation, (11b).

– We must take account of the fact that gas is produced by reaction at the surface of the solid particles,
and here the solid temperature may be different from the mean gas-phase temperature. The resulting
increase in heat content in the gas phase is accounted for by an extra source term on the right-hand side
of the gas energy (temperature) equation, (11a). The factor 1 − ε represents the mass of gas produced
per unit mass of solid reactant lost.

– We assume that the material of the hotspot is such that its surface temperature at any time is uniform
(this is certainly plausible for metallic materials) and will equalize between solid contact and gas con-
tact very rapidly, for a typical average pore size. Thus, it is realistic to assign equal gas and solid-
phase temperatures at the hotspot surface and to average the flux with respect to porosity (to take
account of the difference in thermal conductivity between the two phases); see the first two conditions
in (12).

The approximation of the ignition time used in the previous section, τ1/2, is also employed in the present
section. Let us first compare the results of the H model using the values of Table 1, given by Figs. 6 and 7,
with those of the equivalent PH model and the system without gas flow (Figs. 1 and 2, respectively). Exam-
ination of the former reveals that the ignition time, again measured by τ1/2, is slightly shorter than that
of the PH model, about 1220 s compared with 1240 s. Figure 8 shows the evolution of the heat exchange,
μ(Tg − Ts), for the values given in Table 1 (corresponding to Figs. 6 and 7). In the early stages of reaction
the gas temperature exceeds that of the solid in the entire region, but as the reaction proceeds the solid
temperature rises more rapidly near the hotspot boundary. Eventually, it rises above the gas temperature
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in the vicinity of the reaction zone and a sharp interface develops behind which the solid temperature
dominates and ahead of which the gas temperature dominates. This interface is of course the reaction
zone. Thus, ahead of the reaction zone the solid receives heat from the gas, thereby supplementing the
preheating effect of conduction. Because the local temperature difference changes sign during the process
just described, it is difficult to ascertain the precise effect of heat exchange on the ignition time; there is
a period of gas exchanging heat to the solid and a period in which the opposite occurs. The difference in
ignition times between the examples represented by Figs. 2 and 6 suggests that the period of gas exchanging
heat to the solid has a weak effect in shortening the ignition time.

Figure 9 shows the evolution of the values of Ts, φ, P and ρg at the hotspot, x = x0. Note that by the
boundary condition (12), Ts(0, t) = Tg(0, t). The points represented by an asterisk highlight the value of
each quantity at the time τ1/2. As can be seen by the rapid variation in each quantity soon after τ1/2, the
latter represents a good indicator of the ignition time. It should be pointed out that these plots are typical.



172 J Eng Math (2006) 56:161–177

0 0.2 0.4 0.6 0.8
dimensionless distance

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

1
he

at
 e

xc
ha

ng
e 

ra
te

 μ
 (T

g 
-  T

s)

13501260
1250 seconds

Fig. 8 Profiles of the heat exchange rate, μ(Tg − Ts) for
μ′ = 50 J m−3 K−1 s−1; corresponding to Figs. 6 and 7. Other
values are as in Table 1. The arrows indicate the direction
of movement of the profiles.

0 200 400 600 800 1000 1200

1.2

1.5

1.8

2.1

2.4

0 200 400 600 800 1000 1200

0.32

0.36

0.4

0.44

0 200 400 600 800 1000 1200
0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200
time (seconds)

1.2

1.5

1.8

2.1

2.4

*

*

*

*

T
g 

=
T

s (
at

 h
ot

sp
ot

)
φ 

(a
t h

ot
sp

ot
) 

ρ g
 (

at
 h

ot
sp

ot
) 

P
 (

at
 h

ot
sp

ot
)

* denotes value at τ1/2

Fig. 9 Evolution of the values of Ts, φ, P and ρg at the
hotspot, x = x0. Note that Ts(0, t) = Tg(0, t). The points
represented by ∗ highlight the value of each quantity at the
time τ1/2. As can be seen by the rapid variation in each quan-
tity soon after τ1/2, the latter represents a good indicator of
the ignition time

0 1 2 3 4 5
log10 μ

600

700

800

900

1000

ap
pr

ox
im

at
e 

ig
ni

tio
n 

tim
e 

τ 1/
2 

(s
ec

on
ds

)

Fig. 10 Approximate ignition time τ1/2 as a function of the
heat-exchange parameter μ′. The diamonds indicate values
for φ0 = 0·4 and ε = 0·6; the circles for φ0 = 0·4 and ε = 0·5;
the triangles for φ0 = 0·5 and ε = 0·6; and the squares for
φ0 = 0.6 and ε = 0·5. Other parameters are as in Table 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of reactant mass forming solid ε

900

1000

1100

1200

1300

1400

1500

ap
pr

ox
im

at
e 

ig
ni

tio
n 

tim
e 

τ 1/
2 (

se
co

nd
s)

Fig. 11 Approximate ignition time τ1/2 as a function of
the fraction of reactant mass that forms solid, ε, with other
parameters as in Table 1. The circles indicate values for
φ0 = 0·2, squares for φ0 = 0·3 and triangles for φ0 = 0·4



J Eng Math (2006) 56:161–177 173

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of mass forming solid ε

1230

1245

1260

1275

1290

1305

ap
pr

ox
im

at
e 

ig
ni

tio
n 

tim
e 

τ 1/
2

Fig. 12 Approximate ignition time τ1/2 as a func-
tion of the fraction of reactant mass that forms solid,
ε when C′

g = 1800 J kg−1 K−1 and C′
s = 1200 J kg−1 K−1;

μ′ = 250 J m−3 K−1 s−1 (squares); μ′ = 50 J m−3 K−1 s−1

(circles);μ′ = 1 J m−3 K−1 s−1 (triangles). Other parameters
as in Table 1

0.1 0.2 0.3 0.4

gas thermal conductivity λg

500

750

1000

1250

1500

ap
pr

ox
im

at
e 

ig
ni

tio
n 

tim
e 

τ 1/
2 

(s
ec

on
ds

)

Fig. 13 Approximate ignition time τ1/2 as a function of the
gas thermal conductivity, λ′

g. The circles indicate values for
λ′

s = 0·4, the triangles for λ′
s = 0·2, and the squares for

λ′
s = 0·1. Other parameters are as in Table 1
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We now refer to Fig. 10 for the dependence of τ1/2 on μ′, as it is increased from 1 J m−3 K−1 s−1 to a
value that corresponds to equal temperature in the gas and solid phases (the right-hand axis represents
values of τ1/2 for the PH model). This figure confirms that the dependence on μ′ is relatively weak, with
variations at the most of the order of 10%, and then only when the volume of gas exceeds that of the solid.

Figure 11 demonstrates the change in τ1/2 as ε is varied, for three values of φ0. As with the PH model
we find that decreasing ε decreases τ1/2, which reflects the fact that the solid phase has a much larger
heat capacity than the gas, and therefore attains a lower temperature if more is present per unit volume.
However, when we increase C′

g above the value of C′
s we find a different behaviour, as was the case for the

PH model. Referring to Fig. 12 we see that the trend above is reversed for ε greater than approximately
0·5 , i.e., ignition time increases with deceasing ε, but that for ε below approximately 0·5 ignition time
decreases with decreasing ε. As μ′ → ∞, the trend becomes linear and approaches that of the PH model;
see Fig. 5.
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Specific heat capacity and thermal conductivity of the two phases play a major role, as has already been
seen. Figure 13 demonstrates the dependence of τ1/2 on λ′

g, for three values of λ′
s. As λ′

s is decreased, the
value of τ1/2 decreases, reflecting the fact that less heat is conducted away from the reaction zone. As λ′

g is
increased, τ1/2 increases because the gas phase transports more heat away from the reaction zone, where
its temperature decreases, implying that the solid receives less heat from the gas phase, per unit time. Note
also that varying λ′

s has a more significant impact on the ignition time than varying λ′
g.

Figure 14 shows the value of τ1/2 as C′
s is increased, for three values of C′

g. An increase in C′
s leads to a

decrease in τ1/2, again reflecting the fact that the solid absorbs more energy and therefore attains a lower
temperature. Increases in C′

g have only a minor effect.

5 Discussion and conclusions

The aim of this paper has been to further the understanding of ignition in reactive porous solids subjected
to heating from an impermeable hotspot. We are concerned particularly with those of a low exothermicity,
which often pose storage and handling problems across a number of industries. More specifically, we have
been interested in the role played by (i) the presence of gas in the pores; (ii) gas production and convection;
(iii) (a finite rate of) heat exchange between the phases; and (iv) heat conduction and heat capacity of the
two phases. The many, and often competing, effects in these systems (heat generation, reactant consump-
tion, gas transport and heat-exchange) do not mean that it is a simple matter to predict their behaviour.
We summarize our findings as follows:

(1) Numerical experiments without accounting for heat exchange (the PH model) reveal that for low-
exothermicity materials the presence of gas can shorten the time to ignition, defined as the birth of a
self-propagating combustion wave (recall Figs. 1, 2, 4). This effect is due primarily to the much lower
heat capacity of the gas phase (ρ′

gC′
g), and therefore the higher temperatures it attains, compared with

the solid. However, for large enough values of gas-phase specific heat capacity (greater than that of
the solid phase) ignition time increases as more gas is produced.

(2) In our numerical examples the wave speed appears to be significantly increased by the production and
movement of hot gas through the porous solid, which supplements the conductive preheating by both
convection and the greater diffusivity of the gas. This, and other aspects of the wave propagation have
been rigorously investigated in [11].

(3) The single temperature and dual temperature models give different predictions of the ignition time,
with equality only in the limit μ′ → ∞ (infinite rate of heat exchange). However, altering the rate of
heat exchange between the solid and gas phases leads to only mild changes in the ignition time.

(4) As the volume of gas produced during reaction is increased, the ignition time decreases, provided the
gas-phase specific heat capacity does not exceed that of the solid phase. If it does, the dependence is
non-linear, having a maximum near ε = 0·5.

(5) Increasing the thermal conductivity of the gas and/or solid phase can significantly increase the ignition
time.

(6) Increasing the specific heat capacity of the solid can dramatically increase the ignition time, provided
it exceeds the specific heat capacity of the gas.

Overall, it appears that the presence of the gas plays an important role in determining the ignition time
of the system. The rate at which it transports heat away from the reaction zone, its smaller heat capacity,
and the rate at which it exchanges heat with the solid are all competing processes. Each in isolation has
a considerable influence on the ignition time, the most important being the thermal conductivities of gas
and, especially, solid, the specific heat capacity of the solid and the initial porosity of the material. From
the safety perspective, the greater risk of initiating self-propagating, and possibly disastrous, combustion
is associated with large porosity, low solid heat capacity and poor solid thermal conductivity. In general
ignition is delayed for large ε. The slight exception occurs for the (unusual) case of C′

g > C′
s.
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5.1 Future directions

Throughout these investigations we have assumed that the reaction is not oxygen-limited (which is true
for some chemical compounds) and the physical characteristics of the solid product are identical to those
of the reactant solid. Current work, in both one and three dimensions, has extended the model to include
a gaseous oxidant component; the effects are significant and in some ways counter-intuitive. Solid mate-
rials that produce, on reaction, a solid product with different physical properties, for example a greater
volume or heat capacity, or smaller thermal conductivity, could have great value in preventing the onset of
unwanted self-propagating combustion, and this is the subject of ongoing modelling work. This work also
includes multi-stage kinetics to capture, for example, char oxidation.
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Appendix 1: Nomenclature

Roman

Quantity Symbol Units
Pre-exponential factor A s−1

Specific heat capacity C J kg−1 K−1

Activation energy E J kmol−1

Kozeny–Carmen constant k kg m2 s
Power p W m−2

Pressure P atm
Heat of reaction Q J kg−1

Universal gas constant R J mol−1K−1

Time t s
Temperature T K
Velocity u m s−1

Molar mass W kg kmol−1

Length x m

Greek

Quantity Symbol Units
Ratio of specific heats α –
Ratio of thermal γ –
conductivities
Ratio of densities δ –
Fraction of reacted mass ε –
forming solid
Permeability κ Henry m−1

Thermal conductivity λ W m−1 K−1

Heat-exchange μ J m−3 K−1 s−1

parameter
Dynamic viscosity ν Pa s
Density ρ kg m−3
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Porosity φ -
Reactant volume ψ -
fraction
Reaction rate 
 kg m−3 s−1

Subscripts
Symbol Meaning
g Gas property
s Solid property
0 Ambient/initial value

Superscripts
Symbol Meaning
′ dimensional quantity

Appendix 2: Numerical method

The systems (2)–(6) and (11)–(13) were solved using the finite-volume method, with first-order central-
differencing for the diffusion terms and first-order downwind-differencing for the convection terms. The
grid was staggered with respect to the gas velocity. The first-order time-stepping was made semi-implicit
by approximating the linear terms by their values at the advanced time and the non-linear terms by their
values at the current time and iterating. Convergence to within a good degree of accuracy was typically
achieved with only a few (less than 10) iterations. As an example, we demonstrate the procedure for the
temperature equation (8a), in the SPT model. First we write it in a more convenient form:

(
1 − φ + αδρgφ

) ∂T
∂t

+ αδ
∂

∂t

(
ρgφ

) + αδ
∂

∂x

(
ρgugφT

) − ∂

∂x

(
(1 − φ + γφ)

∂T
∂x

)
= (Q + (1 − ε)T)
, (15)

using (8e) to eliminate ∂φ/∂t = −(1 − ε)∂ψ/∂t = (1 − ε)
.
Let �x and �t be the grid-point spacing and time step, respectively; the subscript j = 1, . . . , N refer to

the (spatial) grid point; the superscript t refer to the current time, t + �t to the advanced time (at which
solutions are sought), and tI to the intermediate solution (during the iteration procedure); then, after
integrating over the domain 0 ≤ x ≤ x1, the discretized version of (15) is:
(

1 − φtI
j + αδρtI

g,jφ
tI
j

) (
Tt+�t

j − Tt
j

) �x
�t

+ αδTt+�t
j

(
ρtI

g,jφ
tI
j − ρt

g,jφ
t
j

) �x
�t

+αδ
(
ρtI

g,ju
tI
g,j+1φ

tI
j T t+�t

j − ρtI
g,j−1utI

g,jφ
tI
j−1Tt+�t

j−1

)
−

Tt+�t
j+1 − 2Tt+�t

j + Tt+�t
j−1

�x

=
(

Q + (1 − ε)TtI
j−1

)
Aψ tI

j exp

(

− 1

εTtI
j

)

, j = 2, . . . , N − 1 (16)

The endpoints j = 1 and j = N are treated slightly differently to incorporate the boundary conditions (9).
Equation (8b) was treated similarly, as was Eq. (8e) after adding a negligible diffusion term for simplicity.
The discretization of Eq. (8c) led to algebraic conditions, and that of Eq. (8d) was achieved by first-order
backward differencing, using the intermediate (iterated) solutions in both cases.

Adaptivity in time was introduced via the following condition:

�x/�t > k × |uM|,
where |uM| was the maximum of the absolute value of gas velocity over j, and k > 0 is a constant. It was
found that a value of k = 1000 was adequate in most cases.
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